

Tallinn University of Technology, May 2025

"Energetic Macroscopic Representation"

.

Prof. Betty LEMAIRE-SEMAIL, Prof. Alain BOUSCAYROL,

Based on the EMR summer school and Master "Electrical Engineering for sustainable development" course at Univ. Lille

Level of study

EMR = graphical formalism for model ORGANISATION (after the modelling step)

A graphical description is chosen depending on objectives

EMR objective:

- real-time control and energy management of energy conversion systems

EMR elements

Association rules EMR of a complete system 3

1

2

Key aspects for energy conversion systems:

Causality principle (energy)

Interaction principle (Systemics)

Only 4 energy functions are required to describe energy conversion systems Energy sources Energy storage Energy conversion Energy distribution

EMR = 4 graphical elements associated with the 4 energy functions

Source elements

terminal elements which represent the environment of the studied system

generator and/or receptor of energy

Example of source elements

Accumulation elements

internal accumulation of energy (with or without losses) causality principle Output variable = Energetic variable

$$\underline{y} \propto \int f(\underline{x}_1, \underline{x}_2) dt$$

 \underline{y} = output, delayed with regard to input changes

fixed I/O (causal description)

Example of accumulation elements

output = current vector (dimension 2)

output = integral function of inputs output delayed from inputs

Example of accumulation elements

Conversion elements

conversion of energy without energy accumulation (with or without losses)

$$\underline{y_2} = f(\underline{x_1}, \underline{z})$$

$$\underline{y_1} = f(\underline{x_2}, \underline{z})$$
 no delay!

upstream and downstream I/O can be permuted (floating I/O) 14

Mono and multi-domain Conversion elements

m: modulation function of the converter

$$\langle m \rangle = D$$

= duty cycle

Conversion elements and I/Os

I/O are defined by accumulation elements

Example of conversion elements

$$U \xrightarrow{i_{dcm}} \overbrace{d_{cm}}^{i_{dcm}} \overbrace{e_{dcm}}^{T_{dcm}} \overbrace{\Omega}^{T_{dcm}}$$

$$L \frac{d}{dt} i_{dcm} + r i_{dcm}$$
$$= u - e_{dcm}$$
$$\begin{cases} T_{dcm} = k_{\Phi} i_{dcm} \\ e_{dcm} = k_{\Phi} \Omega \end{cases}$$

$$\begin{cases} T_{\text{gear}} = k_{\text{gear}} T_1 \\ \Omega_{\text{gear}} = k_{\text{gear}} \Omega_2 \end{cases}$$

$$J \ \frac{d}{dt} \ \Omega_2 = T_{\text{gear}} - T_3$$

Conversion elements and tuning vector

5-speed gearbox

fixed gear

 $k_{\text{gear}} \in \{k_1, k_2, k_3, k_4, k_5\}$

(no tuning input) $k_{gear} = constant$

Coupling elements

distribution of energy without energy accumulation without tuning (with or without losses) $f_1(\underline{x}_1, ... \underline{x}_n)$

 $\begin{cases} \underline{y}_1 = f_1(\underline{x}_1, \dots \underline{x}_n) \\ \dots \\ \underline{y}_n = f_n(\underline{x}_1, \dots \underline{x}_n) \end{cases} \text{ no delay!} \leftarrow$

N elements connected (N-1) overlapped pictograms

Mono and multi-domain coupling elements

no tuning vector

3 electrical elements Connected (battery, load 1, load 2)

> 2 overlapped orange squares

Examples of coupling elements

Field winding DC machine

Mechanical differential

all elements connected by action/ reaction (Systemics)

all power I/O defined by accumulation elements (causality)

only conversion elements can have tuning inputs

valuable for control design

[Bouscayrol 2012] [Bouscayrol 2023]

EMR elements

Association rules

3 EMR of a complete system

1

2

23

Direct association

S1 and S2 any sub-systems

Conflict of association

Structural / mathematical Cartesian approach solution / non physical / non physical

1 equivalent function for 2 elements / systemic

2 accumulation elements would impose the same state variable x_1

Conflict of association

merging y_1 x_1 x_1 y_3 EMR only for detection of conflict of association

come back on modelling for mathematical solving

1 equivalent function for 2 elements / systemic

Example of merging rule

permutation possible if same global behavior: strictly the same effects (y_1 and x_3) from the same causes (x_1 , y_3 and z)

Example of permutation rule

Example: two inertia linked by a fix ratio gearbox

30

Interest for the rules

Summary on association rules

Priority to the function by keeping the physical causality

Principle of holism (systemic)

Main difference between structural and functional descriptions:

1 physical device: maybe 2 functions (e.g. two EMR elements) Association of several physical devices: maybe a unique function (1 EMR element)

EMR elements Association rules EMR of a complete system

4 Example

Convention: direction of positive power flow (could be negative for bidirectional system)

P < 0 action path: $\underline{Y}_1 \leftarrow \underline{Y}_2 \leftarrow \cdots \leftarrow \underline{Y}_7$ (e.g. braking) reaction path $\underline{X}_1 \rightarrow \underline{X}_2 \rightarrow \cdots \rightarrow \underline{X}_7$

I/O independent of power flow direction action/reaction dependent of power flow direction

Tuning paths

Bat

(e.g. velocity control in acceleration AND regenerative braking)

Summary on EMR at system level

I/Os are independent of power flows

tuning paths:

- defined by the technical requirements
- independent of the power flow direction

EMR is adapted for control orgnization

unique control scheme whatever the power flow direction (e.g. traction or generator mode)

EMR elements

Association rules

3 EMR of a complete system

1

2

Example of a lift system

- control of velocity v_{cage}
- tuning input = modulation ratio of chopper *m*

[Lhomme 2014]

EMR of the lift system

Tuning path of the lift system

EMR = multi-physical graphical description

based on the interaction principle (systemic) and the causality principle (energy)

Basic elements = energetic function

sources, accumulation, conversion and distribution of energy

Association rules = holistic property of systemic

enable keeping physical causality in conflict of association

Applications of EMR

analysis, simulation, control organization...

- [Bouscayrol 2000] A. Bouscayrol, & al. "Multimachine Multiconverter System: application for electromechanical drives", *European Physics Journal - Applied Physics,* vol. 10, no. 2, May 2000, pp. 131-147 (common paper GREEN Nancy, L2EP Lille and LEEI Toulouse, according to the SMM project of the GDR-SDSE).
- [Bouscayrol 2012] A. Bouscayrol, J. P. Hautier, B. Lemaire-Semail, "Graphic Formalisms for the Control of Multi-Physical Energetic Systems", Systemic Design Methodologies for Electrical Energy, tome 1, Analysis, Synthesis and Management, Chapter 3, ISTE Willey editions, October 2012, ISBN: 9781848213883
- [Bouscayrol 2023] A. Bouscayrol, B. Lemaire-Semail, "Energetic Macroscopic Representation and Inversion-Based Control", Encyclopedia of electrical and electronic power engineering, Vol. 3, pp 365-375, Elsevier, DOI: 10.1016/B978-0-12-821204-2.00117-3, ISBN: 978-0-12-823211-8, 2023.
- [Chen 2008] K. Chen, A. Bouscayrol, W. Lhomme, "Energetic Macroscopic Representation and Inversion-based control: Application to an Electric Vehicle with an electrical differential", Journal of Asian Electric Vehicles, Vol. 6, no.1, June issue, 2008, pp. 1097-1102.
- [[Lhomme 2014] W. Lhomme, P. Delarue, A. Bouscayrol, P. Barrade, "La REM, formalismes multiphysique de commande des systèmes énergétiques", Les Techniques de l'Ingénieur, Référence D3066, Novembre 2014 (text in French, lift example)

Thanks for your attention!

......

