

Tallinn University of Technology, May 2025

"Electric and Hybrid Vehicles & EMR formalism"

Prof. Alain BOUSCAYROL, Prof. Betty LEMAIRE-SEMAIL

Estonian Doctoral School

MEGEVH network

(Energy management of Hybrid and Electric Vehicles)

Coordination: 2005-2019 A. Bouscayrol 2019-Present S. Jemai

6 projects 4 PhDs in progress 11 PhDs defended

8 industrial partners 10 academic Labs

http://www.megevh.org/

Development of modeling & energy management methods

independently of the kind of vehicle

Laboratoire d'électrotechnique et d'électronique de puissance de Lille

PSA PEUGEOT CITROËN

IFSTTAR

femtost

Support IEEE VTS

IEEE - Institute of Electrical & Electronics Engineers

- Non-profit professional organization for advancing technological innovation and excellence
- 400,000 members from 160 countries (30 % students)
- 38 societies on technical interest
- Activities
 - scientific workshop, conferences, publications, standards
 - database IEEE Xplore, 3.5 millions documents, etc

IEEE VPPC'24, Washington DC 2024 300 attendees from 28 countries

IEEE – Vehicular Technology Society

- Technical topics
 - land, airborne and maritime services
 - mobile communication, vehicle electro-technology
- 2 publications and 4 annual conferences
- Distinguished Lecturer Program

IEEE

Prof. A. Bouscayrol

- HIL simulation
- EMR formalism
- EVs and HEVs

Electric & Hybrid Vehicles

EMR of a EV 3

7

2

- **Control of a EV**
- **Example of a HEV** 4

Green Houses Gase in Europe

EU emissions by sector, megatons of carbon dioxide equivalent

The GHG of all sectors are decreasing....

-1.0

0.8

-1.0

-1.5

-0.8

0.0

except transportation

[McKinsey 2020]

Green Houses Gases in Europe

[Rodríguez 2018]

Comparison of thermal and electric vehicle

Thermal vehicle

- local pollution
- engine losses > 70%
- driving range > 600 km
- energy charging < 5 min

Electric Vehicles

- no local pollution
- e-motor losses < 10%
- driving range < 300 km
- energy charging > 5-10 h

EVs require a new mobility!

MT = Mechanical Transmission PE = Power Electronics

Hybrid vehicle:

- advantage of each technology
- higher cost
- complex control

http://www.toyota.com/

Various configurations:

- different power ratios P_{ICE}/P_{EM}
- different component organization

Peugeot 3008 HY4

http://www.mpsa.com

Fuel cell vehicles

Fuel cell vehicle : = EV with battery replaced by a fuel cell and a H2 tank

http://www.honda.com/

FC vehicle with hybrid storage = another kind of HEV

http://www.toyota.com/

Other vehicles

Hybrid topologies

(power ratio associated with functionalities)

Controls of TVs and BEVs:

mono-objective (no optimization) to ensure the driving cycle

15

pedals

Charging challenge

- slow charge at home / at work (4-10h?) (plug or induction) • ultra-fast charge at specific station (1/2h?)• battery swap station
 - (5-10 min?)

http://france.betterplace.com/

New technologies and developments? "Smart" charge? but also

A new way to manage our energy charge?

Grid connection challenge

A new way to manage our energy prize? Life Cycle Assessment (LCA): "From cradle-t-o-grave" Methodology for estimation of the environmental impacts of a product all along its life time (pollutant emissions, water, air toxicity, soil pollution, energy...)

LCA for vehicles "for fair comparison"

Life Cycle Assessment & GHG

³ Control of a EV

4 Example of a HEV

20

Simplified EV

Objective:

control of the traction system in straight lines

Simplifications:

- a permanent magnet DC machine is considered in a first step
- an equivalent wheel is considered (no curve)

22

Functional Description

25

27

$$F_{res} = k_{roll} Mg \cos \alpha + \frac{1}{2} \rho_{air} A C_x v_{ev}^2 + Mg \sin \alpha$$

Tuning path

Objective: control the EV velocity

Tuning variable: modulation ratio of the DC-DC converter

29

Electric & Hybrid Vehicles

³ Control of a EV

EMR of a EV

7

2

4 Example of a HEV

30

Maximal Control Structure

Maximum Control Structure:

- inversion of each element step-by-step
- all variables are assume measurable

Practical Control Scheme

Example of simplification:

• merging of gains $k_{tot} = k_1 k_2 k_3 k_4$

Practical Control Scheme

Example of estimation:

• estimation of velocity

33

Matlab-Simulink ©, using the EMR library

Electric & Hybrid Vehicles EMR of a EV Control of a EV

4 Example of a HEV

CVT: gearbox with a continuous ratio Interest: accurate adaptation of the ICE speed Drawback: efficiency max of 85%

Driven Pullev

EMR and MCS of the CVT-based HEV

EMS for fuel reduction:

- choice of the CVT ratio (u_{cvt})
- energy distribution between e-drive and ICE (k_{D2})
- brake distribution between e-brake and m-brake (k_{D1})

EMR and MCS of the CVT-based HEV

Example of a part of the strategy: braking management

modelling

 $F_{tot} = F_{wh} + F_{bk}$ F_{tot} F_{wh} v_{hev} $V_{hev} \\ F_{bk}$ brake *V*_{hev} F_{bk-ref} $F_{wh-ref} = k_{D1} F_{tot-ref}$ $F_{bk-ref} = (1 - k_{D1}) F_{tot-ref}$ control F_{wh-ref} $F_{tot-ref}$ k_{D1} Strategy Strategy $k_{D1f} = 1$ $k_{D1f} = 0.5$ $k_{D1f} = 0$ traction v_{hev} 50% e-braking (front wheels) 50% mech-braking (rear wheels) 100% mech-braking when SoC is 100%

Performances of the CVT-based HEV

120

ruled-based EMS:

- imposed by the CVT
- ⊿T imposed by the e-drive

Research @ L2EP

Control team

eV activities

3

4

Examples

41

Validation of new concepts of electrified vehicles for more sustainable transport

Originalities:

- from real components to **real vehicles**
- graphical formalism (EMR) for model and control organisation
- Hardware-In-the-Loop testing (coupling hardware & software)

Objective of the "eV" group

Validation of new concepts of electrified vehicles for more sustainable transport

Originalities:

- from real components to **real vehicles**
- graphical formalism (EMR) for model and control organisation
- Hardware-In-the-Loop testing (coupling hardware & software)

Example from H2020 PANDA

Plug-in Hybrid demo car

"eV" experimental platform

- e-storage workplace (R. German)
- e-charging workspace (P. Delarue)
- e-drive workspace (N. K. Nguyen)
- e-transmission workspace (W. Lhomme)
- e-vehicle workspace (A. Bouscayrol)

Virtual visit @ https://lt360.site/ce2i/l2ep/ev-ulille.php

Research @ L2EP

Control team

eV activities

3

4

46

Double-parallel diesel HEV 3008 HY4

Diesel HEV: increase of the ICE efficiency Double parallel: increase the energy recovery

Control of the Double-parallel diesel HEV

- management of the balance of batteries
- management clutches and gear ratio

[Letrouvé 13]

Validation of the Double-parallel HEV control

Simulation on Matlab-Simulink©

Test on « HIL » plate-form

Validation on prototype

European Project

Coordination RIA H2020

Powerful Advanced N-level Digital Architecture for models of EVs and components Grant Agreement 824256 - 3,5 M € - 3 years – 11 partners – 6 countries

Unified model organization of electrified vehicles and their components For virtual and real testing (EMR at the core of the project)

Virtual testing of electrified vehicles

EV consumption & Climatic condition

Flexible simulation model

[Ramsey 2022]

Simulation validation

Time (s)

Error on the energy consumption = 2.8%

consumption vs. climate & driving cycle

[Ramsey 2022]

New topology for a e-bus?

ALTAS interurban mini bus (5800kg / 20 seats / e-drive 160 kW / Li-lon NMC Bat. 115 kWh)

https://www.atlasautobus.com

Classical "e-drive"

CE2I e-drive (40 kW):

(Integration of 5-phase machine

+ GAN converter)

New e-bus topology:

- 2 in the front axle
- 2 in the rear axle
- specific energy management

Which benefit?

Simulation of the different e-buses

e-drive static models

Driving cycles for test

From ADVISOR2022 database

Time(s)

Simulation results

• Braking strategy : 60% à l'avant et 40% à l'arrière (stabilité)

	Consumption (kWh/100km)		
Driving cycles	New York	London	Denver
Classical e-drive	77.0	43.8	66.1
4 CE2I e-drive	58.4	32.0	48.3
Energy savings	25.2 %	26.9 %	27.0 %

Energy savings despites 30 kg surplus:

- 1) Braking energy recovery
- 2) Energy distribution (4 e-drive)
- 3) Better efficiency

Interest of Hybrid locomotive:

(switching and shunting and locomotives)

- reduction of fuel consumption
- reduction of emission in railway stations
- reduction of noise in railway stations

Experimental demonstrator PLATHEE:

(BB 63 000 diesel electric locomotive)

- diesel engine (215 kW)
- batteries NiCd (194 kWh)
- supercapacitors (7 kWh)
- fuel-cell system

Control of a Hybrid locomotive

EMS for fuel reduction:

- energy distribution between Bat, SCap, FC, ICE
- braking management
- DC bus regulation

MEGEVH

French network on HEV's

[Mayet 12]

Experimental validation

229 t (locomotive + 3 wagons) 50 km (inter-city track) ICE + Bat + SC

model accuracy 95%

Hybrid with filtering EMS (rule-based)

Locomotives	Fuel consumption	Comparison
Diesel (reference)	48.95 L	100 %
Hybrid without regenerative braking	38.88 L	79.43 %
Hybrid with regenerative braking	36.42 L	74.36 %

Control of SIRIUS FP2P2S of CERN

EMR-based control & experimental results

EV and P-HEV are key vehicles for reduction of the GHG of transport

HEV is complex to control EMR methodology is useful in that aim

Extensions to other vehicles

trucks, subways, trains, ships, airplanes...

eV platform of L2EP of Univ. Lille

Nissan Leaf of CUMIN Univ.Lille

Selected references

- [Chan 10] C. C. Chan, A. Bouscayrol, K. Chen, "Electric, Hybrid and Fuel Cell Vehicles: Architectures and Modeling", IEEE trans. on Vehicular Technology, vol. 59, no. 2, February 2010, pp. 589-598 (L2EP Lille and Honk-Kong Univ.).
- [German 24] R. German, T. Kalogianis, A. Bouscayrol, J. He, F. Tournez, M. Berecibar, C. Husar, M. Ciocan, S. Costa, A. Genic, B. Lemaire-Semail, "A flexible cloud-based HIL testing of batteries for various electrified vehicles," IEEE Transactions on Vehicular Technology, vol. 73, no. 4, pp. 4610-4620, April 2024, doi: 10.1109/TVT.2023.3337655
- [Li 25] K. Li, W. Lhomme, A. Bouscayrol, B. Lemaire-Semail, K. Stockman, C. Brocart,"Energy savings of a fourdrive electric bus with two cascaded smart integrated drives on each axle," IEEE Transactions on Transportation Electrification, vol. 11, no. 1, pp. 4145-4156, February 2025.
- [Mayet 12] C. Mayet, P. Delarue, A. Bouscayrol, E. Chatot, J.N. Verhille, "Electrokinematical simulation for flexible energetic studies of railway systems", IEEE transactions on Industrial Electronics, Vol. 65, no. 4, April 2018, pp. 3592-3600 Print ISSN: 0278-0046, Online ISSN: 1557-9948, DOI: 10.1109/TIE.2017.2750632
- [Ramsey 22] D. Ramsey, A. Bouscayrol, L. Boulon, "Flexible Simulation of an Electric Vehicle to Estimate the Impact of Thermal Comfort on the Energy Consumption", IEEE transactions on Transportation Electrification, Vol. 8, no.2, pp. 2288-2298, June 2022, Print ISSN: 2332-7782, Online ISSN: 2332-7782, DOI: 10.1109/TTE.2022.3144526

Thanks for your attention!

......

