

http://emrwebsite.org

### EMR-based comparison of Cascaded H-Bridge and conventional inverter for EV traction chain

Gaël Pongnot, Clément Mayet, Denis Labrousse

SATIE, Université Paris-Saclay, France



| école———         |  |
|------------------|--|
| normale ———      |  |
| supérieure — — — |  |
| paris-saclay     |  |

le c**nam** 







EMR'23, Lille (France)

### **Cascaded H-Bridge structure**







#### **Cascaded H-Bridge Inverter**

EMR'23, Lille, June 2023

5





ADEME ABENCE DE LA TRANSITION ECOLOGIOUE



24 modules of 4 battery cells per line Low voltage MOSFETs (40 V) → Low R<sub>DS on</sub> (< 0.5 mΩ) Nearest Level Command (no PWM) → Few switching AC and DC charging without external converter Fault tolerance

#### Challenges







- 1. Representation and control
  - EMR
  - Modular
  - Compact
  - Numerous freedom degrees
- 2. Energy management
  - Cell balancing
- 3. Efficiency estimation
- 4. Comparison with IGBT and SiC inverters
  - Operating point
  - Realistic conditions

EMR'23, Lille (France)

# **EMR and modeling**



1. One Half-bridge







- 1. One Half-bridge
- 2. Three Half-bridges



#### EMR-based comparison of CHB and conventional inverter for EV Usual inverter USUAL INVERTOR 10 EMR'23, Lille, June 2023

- 1. One Half-bridge
- 2. Three Half-bridges
- 3. Parallel connection



#### **Usual inverter**



- 1. One Half-bridge
- 2. Three Half-bridges
- 3. Parallel connection
- 4. Output vectorization



#### **Usual inverter**



- 1. One Half-bridge
- 2. Three Half-bridges
- 3. Parallel connection
- 4. Output vectorization
- 5. Half-bridges vectorization







#### **Usual inverter**



13

- 1. One Half-bridge
- 2. Three Half-bridges
- 3. Parallel connection
- 4. Output vectorization
- 5. Half-bridges vectorization
- 6. Implicit parallel coupling

Several levels of modelling and vectorization

Representation depends on the most important root element













#### **Cascaded H-Bridges**

EMR'23, Lille, June 2023



#### **Cascaded H-Bridge Inverter**

EMR'23, Lille, June 2023

16



Too many blocs
Too many dimensions
Too many control inputs
→ Need for vectorization



#### EMR-based comparison of CHB and conventional inverter for EV **Cascaded H-Bridge Inverter** 17 EMR'23, Lille, June 2023 Cascaded H-Bridge Inverter Machine Module Battery H-Bridge \_Half-Bridge $v_p$ C $e_{p,m \text{ bat}}$ $v_{p,m \text{ bat}}$ $v_{p,m}$ 3 $v_{p,m,b}$ bat $v_{p,m,b}$ 3M3M3M $\Omega$ $i_p$ 6M6M $\imath_{p,m}$ $i_{p,m}$ bat $i_{p,m}$ bat $l_{p,m,b}$ bat $\imath_{p,m,b}$ $u_{p,m,b}$ $v_p^*$ $v_{\underline{p,m}}^*$ $C^*$ $v^*$ $^{\prime}p,m,b$ 3 3M $6\Lambda$ Cascaded H-Bridge Inverter with Integrated Battery Machine $v_{p,m,1}^*$ $v^*$ ъ 3(M-1)3M低品 臣 Phase Module 바라 悟 Strategy Strategy i) 1 1 1

Æ

侶



## **Simulation results on efficiency**





EMR'23, Lille (France)

### Thank you !

It's time for questions