

http://emrwebsite.org

« EMR Modelling and Longitudinal Motion Control of a Dual-Motor EVs »

An-Toan NGUYEN¹, Binh-Minh NGUYEN², João Pedro F. TROVÃO^{1,3}, Minh C. TA¹

¹University of Sherbooke, Qc, Canada; ²University of Tokyo, Tokyo, Japan; ³IPC-ISEC and INESC Coimbra, Portugal

EMR and Control of a Dual-Motor Electric Vehicles - Outline -2 EMR'23, Lille, June 2023 **Studied Electric Vehicle** 1 **Modelling and Control** 2 **Simulation** 3 **Conclusion** 4

« STUDIED ELECTRIC VEHICLE »

Disadvantages of one-motor all-wheel drive

- Axes are not independent
- Not flexible
- Slow acceleration

Advantages of dual-motor all-wheel drive

- Independent control of each axle
- Flexible operability with three modes
- Powerful, fast and stable acceleration

♦ How to modelize and control this new configuration ?

« MODELLING AND CONTROL »

EMR'23, Lille, June 2023

6

Configuration of the studied dual-motor AWD-EV

Modelling by EMR Principle

EMR'23, Lille, June 2023

7

1) Battery

$$\begin{cases} u_{cell} = u_{cell,OC}(SoC) - r_{cell}i_{cell} \\ SoC_{cell} = SoC_{cell}(0) - \frac{1}{C_{eq}} \int_0^t i_{cell} dt \\ u_{bat} = u_{cell}n_s \\ i_{cell} = \frac{i_{bat}}{n_p} \end{cases}$$
(1)

(4)

(5)

Configuration of the studied dual-motor AWD-EV

 T_{21}

 T_{22}

 $\overline{\mathbf{Q}}_{22}$

Differential

Modelling by EMR Principle

EMR'23, Lille, June 2023

11

6) Wheel & Tire

$$\omega_{ij} = \frac{1}{\widetilde{J}_{\omega,ij}} \int_0^t \left(T_{ij} - T_{d,ij} \right) \mathrm{d}t$$
(6)

Energetic Macroscopic Represention

 ω

 $F_{d,22}$

 V_{22}

 F_{res}

(5)

 ω_{2}

(4)

 $T_{m,2}$

 $\omega_{m,2}$

 $T_{m,2}^*$

Ubat

 $l_{inv,2}$

EMR and Control of a Dual-Motor Electric Vehicles - Modelling and Control -**Inversion-Base Control** 16 EMR'23, Lille, June 2023 Parallel Inverter & Battery Connection Machine Gearbox Differrential Wheels & Tire Chassis Enviroment $T_{11} \overset{(6)}{\frown} \omega_{11} \overset{(7)-(10)}{\frown} F_{d,11}$ (4) (5) $T_{m,1}$ ω_{11} u_{bat} I_{d,11} **V**₁₁ (11)(1)-(2) $u_{bat_{h}}$ (3) $F_{d,tot}$ ⁽¹²⁾ V $\dot{\omega}_{m,1}$ \hat{W}_1 $l_{inv,1}$ (13)I_{d,12} $T_{m,1}^*$ Bat. Air lbat ' d.2 (5)V_{ev} (4) F_{res} $T_{m,2}$ On u_{bat} $F_{d,22}$ $i_{inv,2}$ $T_{m,2}^*$ $\omega_{m,2}$ ω V_{22} Tuning path $T_{m,i} \longrightarrow T_i \longrightarrow T_{ij} \longrightarrow \omega_{ij} \longrightarrow F_{d,ij} \xrightarrow{\Sigma} F_{d,toi} \longrightarrow V_{ev}$ $T_{m,i}^* \longleftarrow T_i^* \longleftarrow T_{ii}^* \longleftarrow \omega_{ii}^* \longleftarrow F_{d,ii}^* \longleftarrow F_{d,tot}^* \longleftarrow \mathsf{V}_{ev}^*$ Control path

Inversion-Based Control

Inversion-Based Control

Inversion-Based Control

Inversion-Based Control

Inversion-Based Control

EMR and control scheme of studied vehicle

« SIMULATION »

- Simulation -

EMR'23, Lille, June 2023

25

TABLE. IV PARAMETERS OF ECOMMANDER PLATFORM

Parameter [Unit]	Value
Equivalent vehicle mass m [kg]	857
Height of the center of gravity h_{CG} [m]	0.85
Distance of front axle from CG l_f [m]	0.865
Distance of rear axle from CG l_r [m]	1.058
Front wheels track width of the vehicle d_f [m]	1.257
Rear wheels track width of the vehicle d_r [m]	1.219
Effective radius of tire $R_{w,i}$ [m]	0.318
Equivalent inertia moment of the wheel $\widetilde{J}_{\omega,i}$ [kg × m ²]	0.55
Drag coefficient c_d	0.65
Equivalent frontal area A_x [m ²]	2

e-Commander at e-TESC Lab.

The studied system is simulated by

MATLAB[®] SIMULINK[®]

It is similar to the real-world operation of an EV

« CONCLUSION »

- Conclution -

EMR'23, Lille, June 2023

- Studied a dual-motor all-wheel drive EV
- Modelling and control design using EMR
- Simulation in MATLAB/Simulink with NEDC and varied road friction coefficient.

Validated by results comparison with commercial software and experiments

Develop different motion control techniques.

Thank you for your kind attention!

« BIOGRAPHIES AND REFERENCES »

An-Toan NGUYEN, Ph.D. student at the e-TESC Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada. Lecturer in Quy Nhon University, Vietnam. Research topics: motion control of EVs An.Toan.Nguyen@USherbrooke.ca

EMR'23. Lille. June 2023

e-TESC Lab

33

Dr. Binh-Minh NGUYEN, Asst. Prof., University of Tokyo, Tokyo, Japan Associate Editor of the IEEE Vehicular Technology Magazine Research topics: glocal control, passivity control, motion control, and their applications in electric vehicles, flying vehicles, and power systems.

nguyen.binhminh@edu.k.u-tokyo.ac.jp

Université de Sherbrooke **Prof. João TROVÃO,** University of Sherbrooke, e-TESC Lab., Canada $\overline{\mathrm{UDS}}$ IPC-ISEC and INESC Coimbra. Chair of the IEEE-VPPC 2018 Ph.D. in Electrical Engineering at University of Coimbra (2013) Instituto Superior Senior Editor of the IEEE Vehicular Technology Magazine de Engenharia Politécnico de Coimbra Research topics: electric vehicles, hybridized energy storage systems, energy management and rotating electrical machines.

Joao.Trovao@USherbrooke.ca

Prof. Minh C. TA, University of Sherbrooke, e-TESC Lab., Canada Chair of the IEEE-VPPC 2019 Ph.D. in Electrical Engineering at Laval University, QC, Canada (1998) Guest Editor of the IEEE Transactions on Vehicular Technology. Research topics: motor drives, advanced control techniques and their applications for electric vehicles and energy conversion systems.

Cao.Minh.Ta@USherbrooke.ca

- References -

EMR'23, Lille, June 2023

[Nguyen 2023] A.-T. Nguyen, B.-M. Nguyen, J. P. F. Trovão, M. C. Ta, "Modelling and Control of Dual-Motor All-Wheel Drive Electric Vehicles using Energetic Macroscopic Representation", *Proceedings of the Canadian Society for Mechanical Engineering International Congress (CSME - CFD-SC2023),* May 2000.

[Nguyen 2015] B.-H. Nguyen, D. Nguyen, V. D. Thanh, and M. C. Ta, "An EMR of Tire-Road Interaction Based-On Magic Formula for Modeling of Electric Vehicles," 2015 IEEE Vehicle Power and Propulsion Conference, 2015.

[Bouscayrol 2023] A. Bouscayrol, B. Lemaire-Semail, "Energetic Macroscopic Representation and Inversion-Based Control ", Encyclopedia of electrical and electronic power engineering, Vol. 3, pp 365-375, Elesevier, DOI : 10.1016/B978-0-12-821204-2.00117-3, ISBN : 978-0-12-823211-8, 2023

[Nguyen 2020] C. T. P. Nguyen, B-H. Nguyen, J. P. F. Trovão, and M. C. Ta, "Effect of battery voltage variation on electric vehicle performance driven by induction machine with optimal flux-weakening strategy," IET Electr. Syst. Transp., vol. 10, no. 4, pp. 351-359, Dec. 2020.