

### « EMR and tools in an education programm»

Dr. Philippe Barrade, A. Germanier

HES-SO Valais-Wallis, Rue de l'industrie 23, CH-1950 Sion

Philippe.barrade@hes-so.ch



C School of Engineering





### « Context »

# EMR and tools in an education programm Power Factor Corrector Image: A constraint of the second second

- Lab proposed for Bachelor Students
  - End last semester / 4 sessions
  - Implementation of the control for a standard PFC rectifier



- Objective
  - Control out voltage to 400V / 1200kW
  - Match with norms IEC-61000-3-2



## «Control identification of a PFC»

#### EMR and tools in an education programm





- Focusing on control only, components for switching on/off the system and pre-load circuit are not considered
  - Main hypothesis: average model for the power converter.
  - Assumption: feeding source is a single phase grid and a diode rectifier.



## EMR and tools in an education programm - From EMR to IBC EMR'23, Lille, June 2023

- Objective : control of out voltage
- Constraint : Current must be a rectified sinewave in the main coil





## « From control identification to experimental tests »

#### EMR and tools in an education programm

- Environnement for testing converters (and control) -

EMR'23, Lille, June 2023

9

• POETIC: Power Electronics Control

Real-time simulator: interfaces board compatible With Digital control platform and system sensors

Digital control platform. ADCs, muC, Digital Input and Output

Power Board: 4 legs, current sensors, over-current protections

Input Board: rectifiers, pre-charge unit, Voltage sensors

Filter Board



#### 

- Using a real-time simulator.... as a simulator
  - With a dedicated library of elements (from PANDA EU project)
  - Elements are empty, one must define all models to be implemented!





- Using a real-time simulator.... as a simulator
  - With a dedicated library of elements (from PANDA EU project)
  - With a library of models, developed according the POETIC modules





- Using a real-time simulator.... as a simulator
  - Link between control and simulated system are external
    - To prepare the deployment on the real system









# EMR and tools in an education programm - Needs in the definition of a state machine EMR'23, Lille, June 2023 I a state st

- Using a real-time simulator.... as a simulator
  - First tests: control does not necessarily solve inrush current issues when powering the system ON...







- Using a real-time simulator.... as a simulator
  - Implementation of: state machine, signal pre-processing, alarms, etc...







• Using a real-time simulator.... as a controller

#### Simulation of control and system

#### Simulation of control, real system





## « Conclusion »

#### EMR'23, Lille (France)

- The use of EMR is done to introduce how the control of a system should be implemented
- A fast-prototyping environment has been introduced
  - Based on a real time simulator
  - With dedicated libraries
  - In a step-by-step approach
- All configuration are possible:
  - Control can be translated to be implemented in a digital control platform.
  - Tests can be performed using a HIL as power converter emulator.

