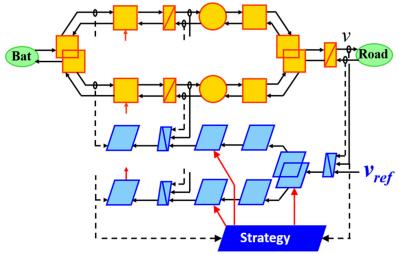
INTERNATIONAL SUMMER SCHOOL - EMR'24


Université de Lille

emr-website.univ-lille.fr

"Modelling and control using ENERGETIC MACROSCOPIC REPRESENTATION" Application to hybrid electric vehicles and others

26-28 March 2024

Noida, India

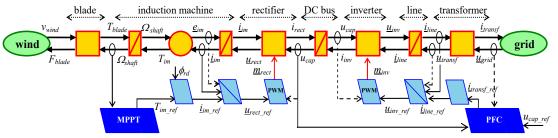
EMR of an Electric Vehicle

EMR in-presence attendees

EMR speakers

EMR on-line attendees

OBJECTIVE


This workshop is focused on the **Energetic Macroscopic Representation (EMR)** methodology for modelling and control of complex electromechanical systems.

This Summer School is aimed at Master and PhD students, Engineers and scientists, from both academia and industry, who must **model and control new multi-physical systems** such as industrial multi-drive systems, traction and propulsion systems, hybrid electric vehicles, or renewable energy generation systems.

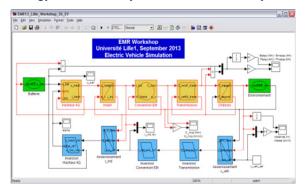
EMR is a graphical formalism that was introduced in 2000 to describe complex electromechanical systems. EMR has since been extended to complex multi-physical systems (thermal science, electrochemistry, fluid mechanics ...). EMR is based on the action-reaction principle to organize the interconnection of models of sub-systems according to the physical causality (i.e integral causality). This description highlights energetic properties of the system (energy accumulation, conversion and distribution). Moreover, an **inversion-based control** can be systematically deduced from EMR using specific inversion rules.

Compared with other graphical description, such as Bond Graphs or Causal Ordering Graphs (COG), EMR has a more global energetic view and contributes to system's control design. It differs from structural description tools such as Physic Modelling Language (PML) using Object-Oriented Modelling Language, which makes its libraries to be coupled in the same way as physical units. EMR is focused on the system function and not only on the system structure. EMR gives insights into the real energy operation of systems and allows a deep understanding of its potentialities from a dynamic point of view.

In short, the distinct features of EMR lie in its clarity of physical concepts, as well as their physical causality, and its functional description rather than a structural description. It hence contributes significantly to the design of control and energy management of systems.

Energetic Macroscopic Representation of a Wind Energy Conversion System

PREVIOUS EMR SUMMER SCHOOLS


Photos of EMR'23, Lille, France

EMR'06 - Lille (France) / EMR'08 - Harbin (China), EMR'09 - Trois-Rivières (Canada) / EMR'11 -Lausanne (Switzerland), EMR'12 - Madrid (Spain) / EMR'13 - Lille (France), EMR'14 - Coimbra (Portugal) / EMR'15 - Lille (France), EMR'16 – Montreal (Canada) / EMR'17 – Lille (France), EMR'18 – Hanoi (Vietnam) / EMR'19 – Lille (France) EMR'20 (Ovideo, Spain) has been cancelled due to COVID-19 crisis, EMR'21 – Lille (France), EMR'22 – Sion (Switzerland), EMR'23 – Lille (France)

SIMULATION TRAINING SESSION

The aim of this Summer School is to give a first-hand experience in practice of using EMR and inversionbased control. Three simulation training sessions will use MATLAB®-Simulink®. Attendees will simulate a complete system and its control using EMR methodology. They will choose to study an electric vehicle, a photovoltaic system or a wind energy conversion system. An EMR library will be provided to all attendees.

MATLAB®-Simulink® model of an Electric Vehicle (orange) and its control (blue) derived from EMR

EM24 at a Glance									
	Montreal	Paris	Delhi	Beijing		Tuesady 26	Wednesday 27	Thursday 28	
	UCT-4	UTC+2	UCT+5.5	UTC+7					_
	11:30	5:30	9:00	10:30			Simulation	Simulation	simulation
	11:50	5:50	9:20	10:50			part 1	part 2	connexion
	0:10	6:10	9:40	11:10					from
	0:30	6:30	10:00	11:30					Asia
	0:50	6:50	10:20	11:50					
	1:10	7:10	10:40	12:10					In presence
	1:30	7:30	11:00	12:30					in India
	1:50	7:50	11:20	12:50					
	2:10	8:10	11:40	13:10					
	2:30	8:30	12:00	13:30					
	2:50	8:50	12:20	13:50					
	3:10	9:10	12:40	14:10					
	3:30	9:30	13:00	14:30		Intro	Application xx	Application xx	
	3:50	9:50	13:20	14:50		Systemics	Application xx	Application xx	
	4:10	10:10	13:40	15:10		EMR	Application xx	Application xx	
	4:30	10:30	14:00	15:30		Control	Application xx	Application xx	
	4:50	10:50	14:20	15:50		Break	Break	Break	lectures on
	5:10	11:10	14:40	16:10		EV example	Application xx	Application xx	concepts
	5:30	11:30	15:00	16:30		RES example	Application xx	Application xx	application
	5:50	11:50	15:20	16:50		Lift example	Application xx	Application xx	for all
	6:10	12:10	15:40	17:10		Break	Break	Break	
	6:30	12:30	16:00	17:30		Application 1	Application xx	Apllication xx	
	6:50	12:50	16:20	17:50		Application 2	Application xx	Application 22	
L	7:10	13:10	16:40	18:10		Application 3	Application xx	Conclusion	
	7:30	13:30	17:00	18:30					
F	7:50	13:50	17:20	18:50				1	
	8:00	14:00	17:30	19:00		Simulation	Simulation		
	8:20	14:20	17:50	19:20		part 1	part 2		
	8:40	14:40	18:10	19:40					simulation
	9:00	15:00	18:30	20:00					connexion
	9:20	15:20	18:50	20:20					from
	9:40	15:40	19:10	20:40					America
	10:00	16:00	19:30	21:00					Europe
	10:20	16:20	19:50	21:20					Africa
	10:40	16:40	20:10	21:40		and of Deci	and of doi:		
	11:00	17:00	20:30	22:00		end of Day	end of day		

PRELIMINARY PROGRAM

This workshop is co-organized by Amity University Uttar Pradesh (Noida) & University of Lille (France).

Chairperson

Prof.(Dr.) Balvinder Shukla, Vice Chancellor, AUUP, Noida

Co-chairs

Prof. Vivek KUMAR, Professor and head, Amity Institute of Technology AUUP Noida Prof. Alain BOUSCAYROL (University of Lille, L2EP, IEEE-VTS, MEGEVH, France)

Program director

Dr. Bedatri MOULIK Assistant Professor, Amity Institute of Technology AUUP Noida

Organization committee

Dr. Ayoub AROUA (University of Lille, L2EP, France)

Dr. Eswara K Mussada, Associate professor, Amity Institute of Technology, AUUP Noida Dr. Puran Singh, Assistant professor, Amity Institute of Technology, AUUP Noida Dr. Gaurav Ninawe, Assistant professor, Amity Institute of Technology, AUUP Noida
Dr. Gurpreet Singh Saini, Assistant professor, Amity Institute of Technology, AUUP Noida
Dr. Anil Kumar, Assistant professor, Amity Institute of Technology, AUUP Noida
Dr. Shailendra S. Chauhan, Assistant professor, Amity Institute of Technology, AUUP Noida

EMR International Scientific Committee

Chair: Prof. Alain BOUSCAYROL (University of Lille, L2EP, IEEE-VTS, MEGEVH, France) Dr. Bedatri MOULIK (Amity University, IEEE-VTS India)
Dr. Philippe BARRADE (University of Applied Sciences of Sion, E-VTS Switzerland)
Prof. Loïc BOULON (Université du Québec à Trois-Rivières, IRH, IEEE-VTS, Canada)
Prof Lucia GAUCHIA, University of Carlos III Madrid (Spain)
Prof. Christophe GIRAUD-AUDINE (Arts et Métiers Institute of Technology, L2EP, France)
Prof. Daniel HISSEL (University of Franche Comté, FEMTO-ST, IEEE-VTS, MEGEVH, France)
Prof. Eric HITTINGER (Rochester Institute of Technology USA)
Prof. Betty LEMAIRE-SEMAIL (University of Lille, L2EP, France)
Dr. Clément MAYET (University of Lille, L2EP, IEEE-VTS, France)
Dr. Daniel MONTESINOS (Universitat Politècnica de Catalunya, Spain)
Prof TA Cao Minh (Hanoi University of Sciences and Technology, IEEE-VTS, Canada)
Dr VO Duy Thanh (Hanoi University of Sciences and Technology, IEEE-VTS, Vietnam)

REGISTRATION

Registration is mandatory for all. Registration will be on first cum first serve basis. Proof of identity is required corresponding to each category. Participation certificate will be provided to all. Last date for registration is March 20, 2024.

International attendees

Students	75 €
Academic	150€
Industrial	300€

Indian attendees (offline)

Students	750 rupees
Academic	1500 rupees
Industrial	2500 rupees

Indian attendees (online)

Students	500 rupees
Academic	1000 rupees
Industrial	2000 rupees

Amity Member: Free

To register click here: https://amity.edu/nspg/FDPEMR2024

INFORMATION

Contact: bmoulik@amity.edu

The summer school takes place in Amity University, Sector 125, Noida Uttar Pradesh, India. More information: <u>https://emr-website.univ-lille.fr/</u>