Modeling of Physical Systems Using Energetic Graphical Techniques

Dr. Davide TEBALDI, Prof. Roberto ZANASI

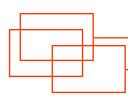
Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, Italy

davide.tebaldi@unimore.it, roberto.zanasi@unimore.it

Introduction to Power-Oriented Graphs

- 2
- First EMR-POG modeling case study: DC motor driving a hydraulic pump
- 3
- Second EMR-POG modeling case study: subway traction system
- 4

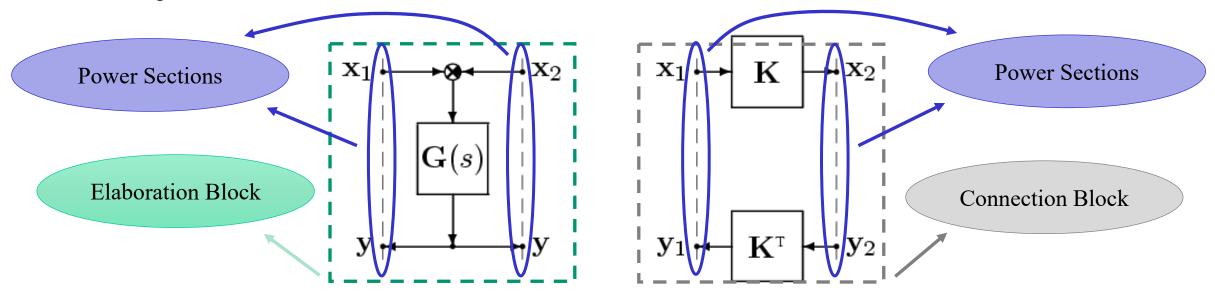
Comparison between EMR and POG Modeling Techniques


5

The POG_Modeler can be expanded towards EMR

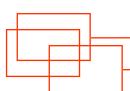
6 0

Conclusion

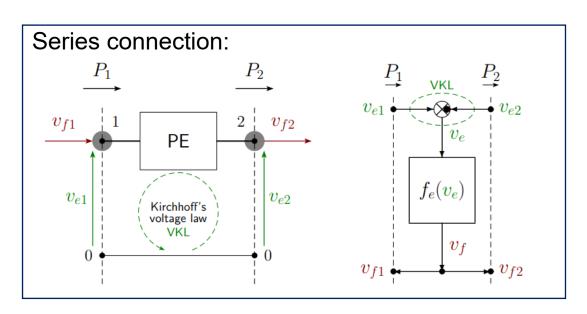

Introduction to Power-Oriented Graphs

Power-Oriented Graphs

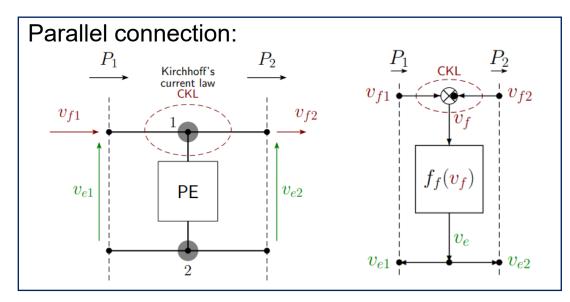
EMR'25, Lille, July 2025


Power-Oriented Graphs are "block diagrams" obtained by using a "modular" structure which is essentially based on the following two blocks:

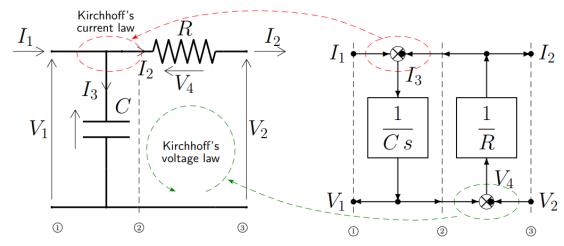
Power Sections: the POG maintains a direct correspondence between pairs of power variables and actual power flows: the product of the two power variables characterizing a section has the meaning of "power flowing through that section"


Elaboration blocks describe the dynamic/static elements that store/dissipate energy

Connection blocks perform energy conversion either from one energetic domain to another or within the same energetic domain

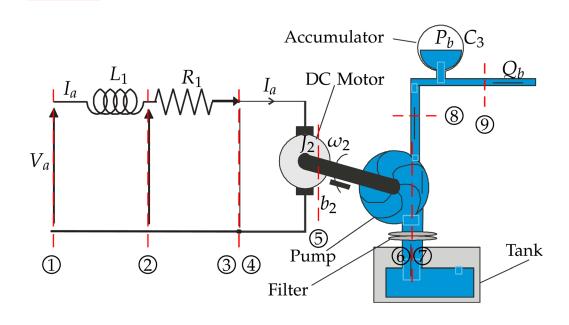

Examples of Series/Parallel Connections

EMR'25, Lille, July 2025



Energetic domains, physical elements, energy and power variables:

	Electrical	Mechanical Translational	Mechanical Rotational	Hydraulic
D_e	Capacitor C	Mass M	Inertia J	Hyrdaulic Capacitor C_I
q_e	Charge Q	Momentum p	Angular Momentum p	Volume V
v_e	Voltage V	Speed v	Angular Speed ω	Pressure P
D_f	Inductor L	Spring E	Rotational Spring E_r	Hydraulic Inductor L_I
q_f	Flux ϕ	Displacement x	Angular Displacement θ	Hydraulic Flux ϕ_I
v_f	Current I	Force F	Torque $ au$	Volume Flow Rate Q
R	Resistor R	Friction b	Angular Friction d	Hydraulic Resistor R_I

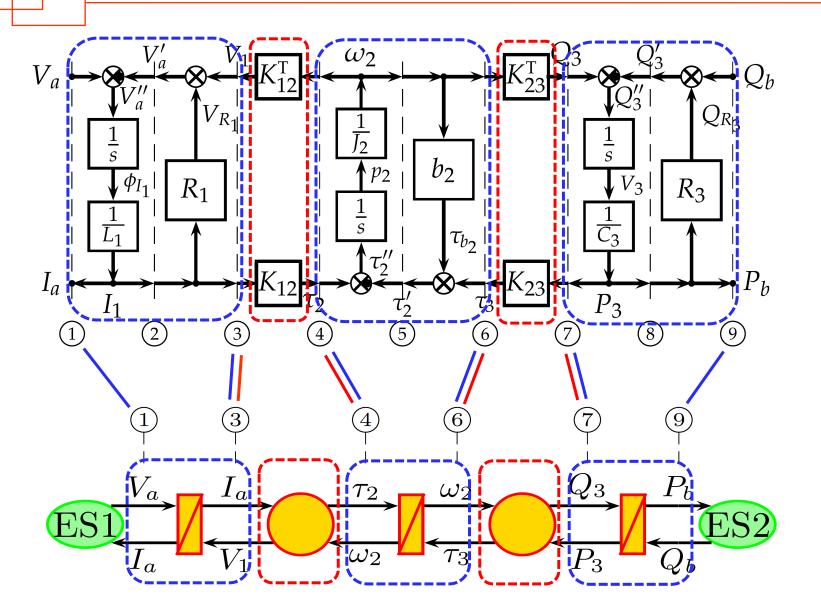

Modeling example:

First EMR-POG modeling case study: DC motor driving a hydraulic pump

DC Motor Driving a Hydraulic Pump

EMR'25, Lille, July 2025

- L_1 , R_1 : inductance and resistance of the DC electric motor
- *J*₂, *b*₂: moment of inertia and friction coefficient of the DC electric motor
- C_3 , R_3 : hydraulic capacitor and hydraulic resistance of the hydraulic pump

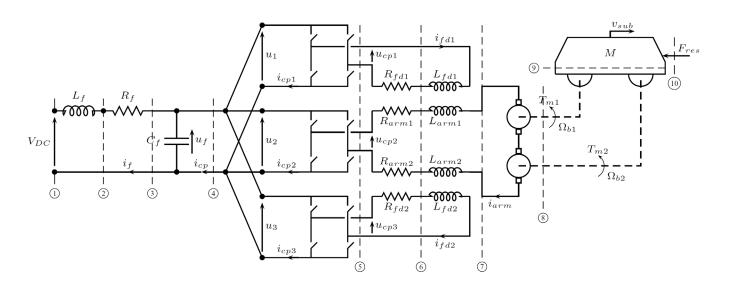

- V_a I_a: electrical input power of the DC electric motor
- Electrical-to-mechanical energy conversion after dissipation due to R_1
- Mechanical-to-hydraulic energy conversion after dissipation due to b_2
- $Q_b P_b$: output power of the hydraulic pump

$$\underbrace{\begin{bmatrix} L_{1} & 0 & 0 \\ 0 & J_{2} & 0 \\ 0 & 0 & C_{3} \end{bmatrix}}_{\mathbf{L}} \underbrace{\begin{bmatrix} \dot{I}_{1} \\ \dot{\omega}_{2} \\ \dot{P}_{3} \end{bmatrix}}_{\dot{\mathbf{x}}} = \underbrace{\begin{bmatrix} -R_{1} - K_{12} & 0 \\ K_{12} & -b_{2} & -K_{23} \\ 0 & K_{23} & -R_{3} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} I_{1} \\ \omega_{2} \\ P_{3} \end{bmatrix}}_{\mathbf{X}} + \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -1 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} V_{a} \\ Q_{b} \end{bmatrix}}_{\mathbf{U}}$$

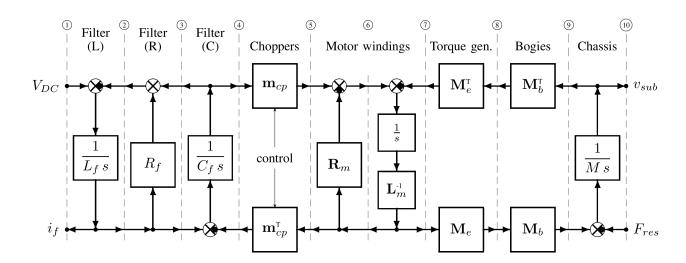
8

DC Motor Driving a Hydraulic Pump

EMR'25, Lille, July 2025



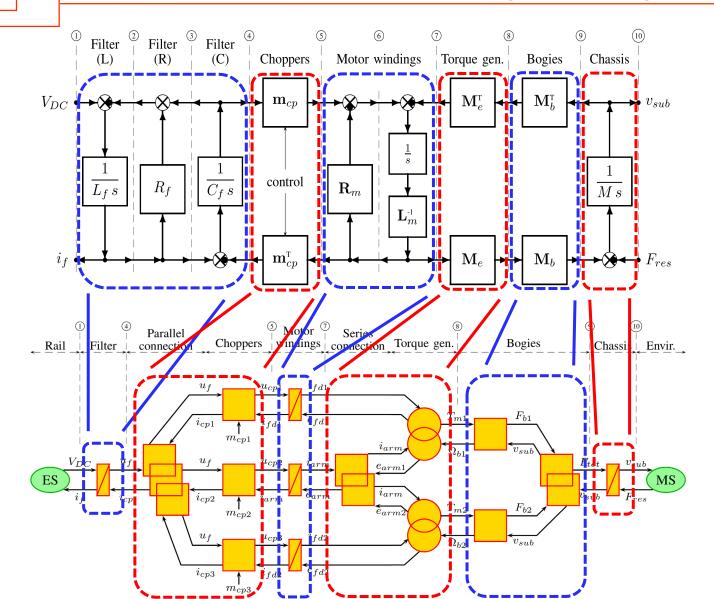
- L₁, R₁: inductance and resistance of the DC electric motor
- J₂, b₂: moment of inertia and friction coefficient of the DC electric motor
- C₃, R₃: hydraulic capacitor and hydraulic resistance of the hydraulic pump


Second EMR-POG modeling case study: subway traction system

Subway Traction System

EMR'25, Lille, July 2025

- From sections 1 to 4: input filter
- From sections 4 to 5: choppers
- From sections 5 to 7: field and armature windings of the DC motors
- From sections 7 to 8: power links between DC motors and bogies


$$\mathbf{m}_{cp} = \begin{bmatrix} m_{cp1} \\ m_{cp2} \\ m_{cp3} \end{bmatrix} \quad \mathbf{R}_m = \begin{bmatrix} R_{fd1} & 0 & 0 \\ 0 & R_{arm} & 0 \\ 0 & 0 & R_{fd1} \end{bmatrix} \quad \mathbf{L}_m = \begin{bmatrix} L_{fd1} & 0 & 0 \\ 0 & L_{arm} & 0 \\ 0 & 0 & L_{fd1} \end{bmatrix}$$

$$\mathbf{M}_{b} = \begin{bmatrix} m_{b1} \ m_{b2} \end{bmatrix} \quad \mathbf{M}_{e} = \begin{bmatrix} 0 \ k_{dcm1} \ i_{fd1} \ 0 \\ 0 \ k_{dcm2} \ i_{fd2} \ 0 \end{bmatrix} \qquad \mathbf{u}_{cp} = \begin{bmatrix} u_{cp1} \\ u_{cp2} \\ u_{cp3} \end{bmatrix}$$

$$\mathbf{i}_m = egin{bmatrix} i_{fd1} \\ i_{arm} \\ i_{fd2} \end{bmatrix} \quad \mathbf{e}_m = egin{bmatrix} e_{fd1} \\ e_{arm} \\ e_{fd2} \end{bmatrix} \quad \mathbf{\Omega}_b = egin{bmatrix} \Omega_{b1} \\ \Omega_{b2} \end{bmatrix} \quad \mathbf{T}_m = egin{bmatrix} T_{m1} \\ T_{m2} \end{bmatrix}$$

Subway Traction System

EMR'25, Lille, July 2025

- From sections 1 to 4: input filter
- From sections 4 to 5: choppers
- From sections 5 to 7: field and armature windings of the DC motors
- From sections 7 to 8: power links between DC motors and bogies

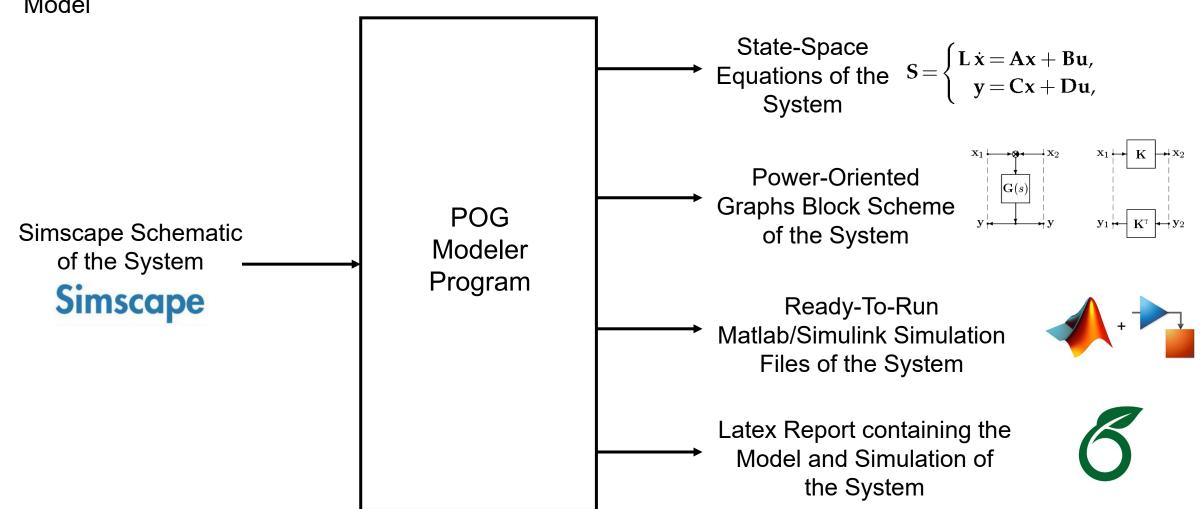
Comparison between EMR and POG Modeling Techniques

Modeling of Physical Systems Using Energetic Graphical Techniques

Subway Traction System

EMR'25, Lille, July 2025

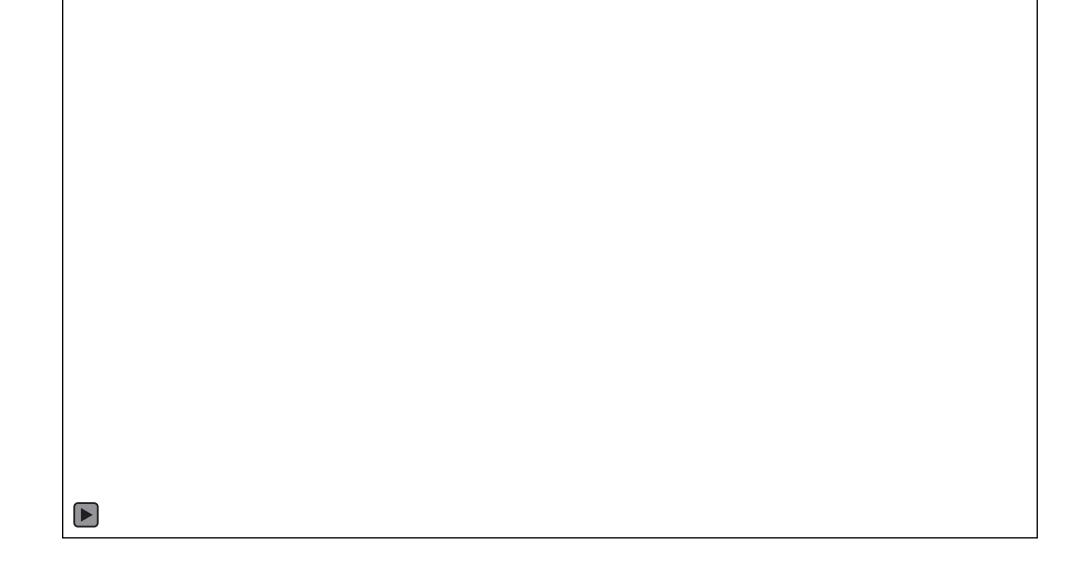
	POG	EMR
Energetic domains	All known	All known
Power variables	Scalar and vectorial	Scalar and vectorial
Causality	Integral	Integral
Symbolism	Gain, Integrators and Summation Nodes	Pictograms
Power Variables Direction Visibility	Yes	Yes
Main Scope	Simulation and Analysis	Simulation and Control
Simulation	Directly in Simulink	Simulink library
Graphical representation	Linear	Planar
Control structure	No methodology	Methodology through inversion rules


The POG_Modeler can be expanded towards EMR

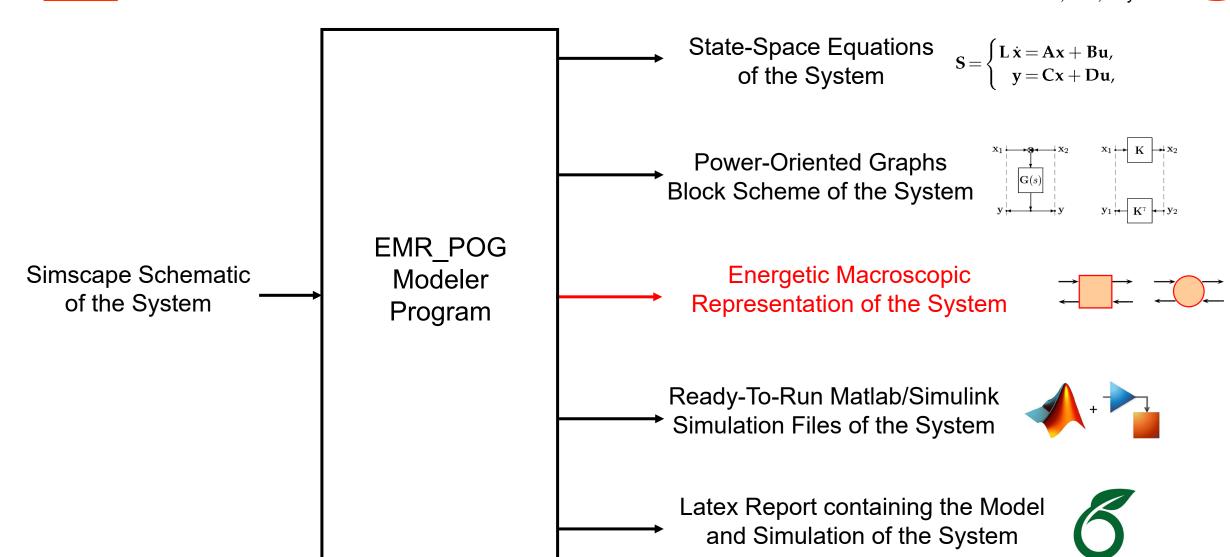
The POG_Modeler Program – Its Current Status

EMR'25, Lille, July 2025

15

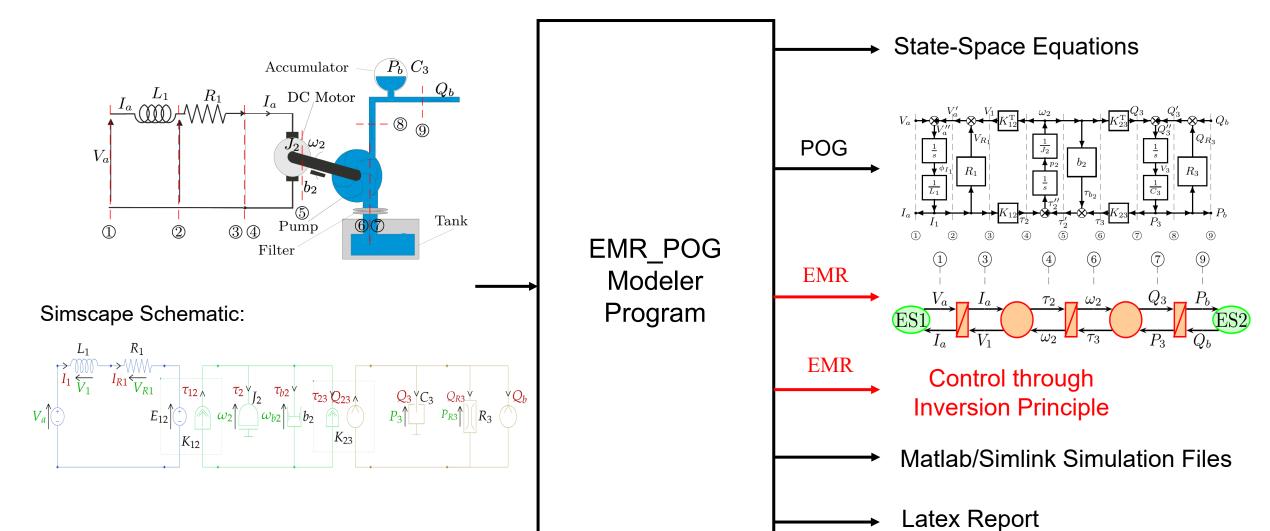

A Matlab/Simulink program that automatically converts Simscape Schematics into the corresponding POG Model

Modeling of Physical Systems Using Energetic Graphical Techniques



EMR'25, Lille, July 2025

The EMR_POG_Modeler Program – Potential Extensions


EMR'25, Lille, July 2025

Modeling of Physical Systems Using Energetic Graphical Techniques

The Program – Example of Our Vision

EMR'25, Lille, July 2025

Conclusions

- 1. Energetic Macroscopic Representation (EMR) and Power-Oriented Graphs (POG) are energy-based techniques that can be used for modeling all types of physical systems involving power flows
- 2. The POG_Modeler can evolve towards a EMR_POG_Modeler
- 3. A unified MATLAB/Simulink program that automatically generates EMR and POG representations starting from the Simscape schematics can take advantage of both the POG state space modelling and the EMR control through inversion principle.

Biographies and references

- Authors -

EMR'25, Lille, July 2025

22

Dr. Davide TEBALDI, University of Modena and Reggio Emilia, Italy PhD in Information and Telecommunication Technology at University of Modena and Reggio Emilia in 2022
Assistant Prof. at University of Modena and Reggio Emilia since 2023
Associate Editor of IEEE Transactions on Transportation Electrification

Research topics: graphical modeling techniques applied to electromechanical systems and hybrid automotive systems, hybrid electric vehicles, power converters, electric machines, collaborative robotics

since 2025

Prof. Roberto ZANASI, University of Modena and Reggio Emilia, Italy PhD in System Engineering at University of Bologna (1992) Full Professor at University of Modena and Reggio Emilia Research topics: POG modeling of complex physical systems, advanced control techniques, trajectory planning, control in automotive systems

davide.tebaldi@unimore.it, roberto.zanasi@unimore.it

- [1] D. Tebaldi, R. Zanasi, "The Power-Oriented Graphs Modeling Technique: From the Fundamental Principles to the Systematic, Step-By-Step Modeling of Complex Physical Systems", IEEE Access, vol. 13, pp. 32470 32485, Feb. 2025.
- [2] R. Zanasi "The Power-Oriented Graphs Technique: system modeling and basic properties", IEEE VPPC 2010 (Vehicular Power and Propulsion Conference), Lille, France, September 2010.
- [3] R. Zanasi, G. H. Geitner, A. Bouscayrol, W. Lhomme, "Different energetic techniques for modelling traction drives", ELECTRIMACS 2008, 9th International Conference on Modeling and Simulation of Electric Machines, Converters and Systems, 8-11 June 2008.
- [4] F. Grossi, W. Lhomme, R. Zanasi, A. Bouscayrol, "Modelling and control of a vehicle with tire-road interaction using POG and EMR formalisms", *ELECTROMOTION 2009*, EPE Chapter "Electric Drives" 8th International Symposium on Advanced Electromechanical Motion Systems, Lille, France, July 2009 (common paper University of Modena and L2EP Lille)
- [5] F. Grossi, W. Lhomme, R. Zanasi, A. Bouscayrol, "Modelling and control of a vehicle with tire-road interaction using energy-based techniques" *IEEE VPPC 2009 (Vehicular Power and Propulsion Conference)*, Dearborn, Michigan, USA, September 2009 common paper University of Modena and L2EP Lille).

Thanks for your attention!