Khanh-Linh Dang

Linh Tran, Thanh Vo-Duy, Minh C.Ta, João Pedro F. Trovão, Bảo-Huy Nguyễn

CTI Lab for Electric Vehicles, Hanoi University of Science and Technology, Vietnam

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

2 Single Machine Infinite Bus

Multiple-Bus Power System

4 Results and discussions

« PART 1: Introduction»

EMR'25, Lille, July 2025

- □ IBRs are gaining popularity
- ☐ The increasing of IBRs in grid effects the grid's Inertia and VoltageRegulation
- Maintaining the grid stability is crucial

Hybrid Power Systems Combining Grid-Following and Grid-Forming

EMR'25, Lille, July 2025

Grid-Following

(Current Source)

Do not directly control voltage-frequency

Cannot work without grid

Mathematical
Model + Energetic
Macroscopic
Representation

« PART 2: Single Machine Infinite Bus»

EMR'25, Lille, July 2025

- ☐ Cause instability in the grid with high impedance (weak grid)
- ☐ Only works in grid connected mode
- ☐ Do well with strong grid
- ☐ GFLI technique uses Phase-Locked Loop (PLL) for regulation

Table 1. GFLI Fomulas

Phase-Locked Loop (PLL)

$$\theta_{PLL} = \frac{1}{S} \left(k_{p_{PLL}} + \frac{k_{i_{PLL}}}{S} \right) (u_{PCC_q} - 0) \tag{1}$$

Active and Reactive power

$$P = 1.5 \left(u_{PCC_d} i_{PCC_d} + u_{PCq} i_{PCC_q} \right)$$

$$Q = 1.5 \left(-u_{PCC_d} i_{PCC_q} + u_{PCq} i_{PCC_d} \right)$$
(2)

Grid-Forming Inverter (GFMI)

EMR'25, Lille, July 2025

- □ Sets up the grid voltage magnitude and frequency
- ☐ Works in grid connected or islanded mode
- ☐ Can work with weak grid
- ☐ GFLI technique uses Virtual Synchronous Generator (VSG)

Table 2. GFMI Fomulas

Power synchronization

$$J\frac{d\omega_{VSG}}{dt} = \frac{P_{ref} - P}{\omega_{VSG}} - D(\omega_{VSG} - \omega_g)$$

$$\frac{d\theta_{VSG}}{dt} = \omega_{VSG}$$
(3)

Excitation Loop

$$E_m = E_0 + k_q \int (k_u (U_N - u_{PCC}) + Q_{ref} - Q)$$
 (4)

With θ_{VSG} is the grid angle, J, D, E_0 , k_q , k_u , U_n are the gains and the coefficient of the algorithm

Single Machine Infinite Bus

EMR'25, Lille, July 2025

(5)

- Each phase of the inverter isconnected with a filter; this filter can be L, LC, or LCL filters
- ☐ This model used the controlled voltage source connected to an inductor

Table 3. GFMI Fomulas

Grid impedance $\frac{u_{PCC} - u_g}{L_g s + R_g} = i_{PCC}$

PCC Voltage

$$u_{PCC} \left(\frac{1}{L_{inv}s + R_{inv}} + \frac{1}{L_{g}s + R_{g}} \right) = u_{inv} \frac{1}{L_{inv}s + R_{inv}} + u_{g} \frac{1}{L_{g}s + R_{g}}$$
(6)

« PART 3: Multiple Bus»

Energetic Macroscopic Representation of Multiple Bus

EMR'25, Lille, July 2025

11

- ☐ Source 1: Grid Forming Inverter
- Source 2: Synchronous generator
- ☐ Source 3: Grid Following inverter
- □ BUS 4,5,6,7,8,9
- □ PCC BUS 1,2,3

Table 4. IEEE 9 Bus Fomulas

PCC
$$u_{PCC} \left(\frac{1}{L_{mn}s + R_{mn}} + \frac{1}{L_{n}s + R_{n}} \right)$$
 Voltage
$$= u_{BUSm} \frac{1}{L_{n}s + R_{n}} + u_{gn} \frac{1}{L_{n}s + R_{n}}$$
 (7)

BUS Voltage
$$u_{BUS} \left(\frac{1}{L_{i}s + R_{i}} + \frac{1}{L_{j}s + R_{j}} + \frac{1}{L_{k}s + R_{k}} \right)$$

$$= u_{i} \frac{1}{L_{i}s + R_{i}} + u_{j} \frac{1}{L_{j}s + R_{j}} + u_{k} \frac{1}{L_{k}s + R_{k}}$$
(8)

Load
$$\frac{u_{PCC}}{L_{load}s + R_{load}} = i_{load}$$
 (9)

With L_x , R_x is the line, load and source impedance

Energetic Macroscopic Representation of Multiple Bus

EMR'25, Lille, July 2025

« PART 4: Results and discussions»

Simulation scenarios

EMR'25, Lille, July 2025

Parameters	Values	Units
Grid		
Nominal voltage	10	\overline{kV}
Nominal frequency	50	Hz
Nominal angular speed	314	rad/s
GFLI		
Filter inductance	0.3	\overline{mH}
Filter resistance	0.115	Ω
GFMI		
Filter inductance	0.3	\overline{mH}
Filter resistance	0.115	Ω
Line		
Line inductance (Short)	28	\overline{mH}
Line resistance (Short)	2.3	Ω
Line inductance (Long)	50	mH
Line resistance (Long)	4.0	Ω

- ☐ Simulation parameters: Table 5
- ☐ Simulation scenarios: SMIB and Multi Bus
- ☐ SMIB
 - ☐ Scenarios 1: GFLI
 - ☐ Scenarios 2: GFMI
 - ☐ Initial active power 8MW, then 12MW, 20MW, 24MW after each 10s.
 - ☐ Thus the Short Circuit Ratio (SCR) change from 5.48 to 1.83
- □ IEEE 9BUS: References: 2MW for GFLI and 3MW for GFMI, then change at 10s.

Simulation results

EMR'25, Lille, July 2025

15

☐ GFMI performs well at low SCR while the GFLI becomes unstable when the grid is weak

16

☐ GFLI voltages and currents vary higher than GFMI

17

☐ GFLI frequency varies larger than that of GFMI, which exceeds the range -10% to +10% of 50Hz

☐ Frequency response value varies in the range of 45 to 55 Hz, which is about -10% and +10%.

18

«CONCLUSIONS»

Conclusions and perspectives

EMR'25, Lille, July 2025

CONCLUSION

- Grid forming and following inverter control schemes are investigated
- Studied with both the SMIB and multi-bus models
- The simulation shows that the EMR method perfors well

FUTURE WORK

- Grid forming and following inverter control schemes in fault scenarios
- Studied with more bus model
- Optimal control for fault scenarios

20

References

EMR'25, Lille, July 2025

- [1] Lin, Yashen, Ho, Joseph H., Johnson, Brian B., Flicker, Jack D., Lasseter, Robert H., Villegas Pico, Hugo N., Sen, Gabi-Sa., Pierre, Brian J., and Ellis, Abraham. Research Roadmap on Grid-Forming Inverters. United States: N. p., 2020. Web. doi:10.2172/1727177.
- [2] K. S. Sajadi, P. H. Flisel, M. C. Raza, and J. Uemura, "Energetic macroscopic representation (EMR): New approach for multiphysics mechatronic driving forces," *IFAC Proc. Vol.*, vol. 8, no. PART 1, pp. 773-778, 2012. doi:10.3182/20120912-4-FR-2041.00216.
- [3] N. Al Ghamdi, S. B. Wang, E. Lorenz, and M. Schuerlein, "Energetic macroscopic representation and inversion-based control of DC microgrid," 2013 15th Eur. Conf. Power Electron. Appl. EPE, 2013, no. September, 2013, doi: 10.1109/EPE.2013.6634368.
- [4] A. Koita, A. Payman, B. Dakyo, and D. Hissel, "Control of a Wind Energy Conversion System using the Energetic Macroscopic Representation," 7th Int. IEEE Conf. Renew. Energy Res. Appl. ICRERA, 2018, pp. 1460-1465, 2018. doi: 10.1109/ICRERA.2018.8566874.
- [5] D. Prabhakaran, M. H. Lasseter, and T. M. Jahns, "Comparison of Grid Following and Grid Forming Control for a High Inverter Penetration Power System," 2018 IEEE Power and Energy Society General Meeting (PESGM), Portland, OR, USA, 2018, pp. 1-5. doi: 10.1109/PESGM.2018.8586162.
- [6] U. T. Yaqoob and M. D. Solanki, "Comparison of LCL and LTI filters for inverter interfacing applications," 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 2017, pp. 455-458. doi: 10.1109/ICOEI.2017.8300844.
- [7] D. Prabhakaran, M. H. Lasseter, and T. M. Jahns, "Comparison of Grid Following and Grid Forming Control for a High Inverter Penetration Power System," 2018 IEEE Power and Energy Society General Meeting (PESGM), Portland, OR, USA, 2018, pp. 1-5. doi: 10.1109/PESGM.2018.8586162.
- [8] Salem O. Alqarni, H. Karimifard, M. A. A. GFM-based Inverter Control for Power Sharing in Microgrids Based on PM and OV Droop Characteristics. Sustainability, 2023; 15(5):11774.
- [9] Moattamed, Nabil, Adil A. Muhammad and Chobokar, Mahdi and Fleischer, John. (2023). Accurate circuit of virtual oscillator controlled islanded AC microgrids. *Electric Power Systems Research*. 214. 107987. 10.1016/j.epsr.2022.107987.
- [10] Sorawit Hem, Carla Rechan, M. Hossny. *GFM control for a grid-forming converter operating as virtual synchronous generator with enhanced dynamic response capability*. International Journal of Electrical Power and Energy Systems, vol. 149, 10-SsN-11022-0151-6. doi:10.1016/j.ijepes.2023.110779.
- [11] U. T. Yaqoob and M. D. Solanki, "Comparison of LCL and LTI filters for inverter interfacing applications," 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 2017, pp. 455-458. doi: 10.1109/ICOEI.2017.8300844.
- [12] X. Gao, X. Duan, A. Al-Mohtaseb, and F. Blaabjerg, "A Comparative Stability Study of Grid-Following and Grid-Forming Control Schemes in Power Electronic-Based Power Systems," *Power Electron. Drives*, vol. 8, no. 1, pp. 1-20, 2023. doi: 10.2478/pead-2023-0001.

21

Thanks for your attention!