<sup>1</sup> <u>Dr. Halima Ikaouassen</u>, <sup>2</sup> Dr. Florian Tournez and <sup>2</sup> Prof. Alain BOUSCAYROL

<sup>1</sup> FEMTO-ST, Université Marie et Louis Pasteur, France <sup>2</sup> L2EP, University of Lille, France













Off-Grid solar charging system and its EMR

2

**Data base generation** 

3

**EMR** and Backward Modelling



**Simulation Analysis and Discussions** 

# « Off-Grid Charging System and its EMR »



EMR'25, Lille, June 2025

### Global E-Bike's growth



### Why Off-Grid Charging?

- Reduce pressure on grid infrastructure
- Enable charging access in rural/remote areas
- Promote green urban mobility
- Support smart cities and energy autonomy



Off-grid Solar Charging E-Bikes's system under study

### - Structural scheme of the E-Bikes's charging system -

EMR'25, Lille, June 2025







- Problem statement and objectives-

EMR'25, Lille, June 2025

#### 1) Problem statement after studies

- S'odani letyengys (Mæaft) Mereværig by ility, variable yield)
- Temperature (overheating or under-performance)
- Stationary battery (ageing, thermal management, cycling)
- Systiem to both submonay (storggenerang agentoend rus).
- ➤ Variable reetlaagigig gleteanaholveveimteme



Oversizing issues of the solar PV array and battery storage unit

#### 2) Objectives

Sizing methodology to promote the viability and feasibility of setting up off-grid charging system

### « Data Base Generation »

### - Solar potential based GHI data-

EMR'25, Lille, June 2025

#### 2 sensible points: Global Horizon Irradiation (GHI) and Charging demand profile over the time







**International Energy Agency** 

Electric Vehicle Charging and Grid Integration

Tool

EMR'25, Lille, June 2025

10

#### 2 sensible points: Global Horizon Irradiation (GHI) and Charging demande profil over the time



GEF-7 Global Program to
Support Countries in the Shift
to Electric Mobility

Data base of charging profile based on statics of Velib





# « EMR and Backward Modelling »



### **Assumptions:**

- System's dynamic is neglected.
- · Efficiency of the power converters are considered
- Control considered as ideal
- Total energy demand for N E-Bikes is considered as consumption of all demand profiles

- Backward modelling of off-grid charging E-Bikes's system -

EMR'25, Lille, June 2025

13



Static model based Backward of off-grid charging E-Bikes's system

# « Simulation Analysis and Discussions »





#### - Quick look about optimisation -

EMR'25, Lille, June 2025

Optimization of the surface area based on battery energy discharge



- 1: Lille Summer 2007 matin5 midi5 soir5
- 2: Lille Summer 2007 matin25 midi0 soir20
- 3: Lille Summer 2007 matin0 midi25 soir15
- 4: Lille Summer 2007 matin30 midi30 soir30
- 5: Marseille Summer 2007 matin5 midi5 soir5
- 6: Marseille Summer 2007 matin25 midi0 soir20
- 7: Marseille Summer 2007 matin0 midi25 soir15
- 8: Marseille Summer 2007 matin30\_midi30\_soir30
- 9: Marseille Winter 2010 matin5\_midi5\_soir5
- 10: Marseille Winter 2010 matin25\_midi0\_soir20
- 11: Marseille Winter 2010 matin0\_midi25\_soir15
- 12: Marseille Winter 2010 matin30 midi30 soir30
- 13: Lille Winter 2023 matin5 midi5 soir5
- 14: Lille Winter 2023 matin25 midi0 soir20
- 15: Lille Winter 2023 matin0 midi25 soir15
- 16: Lille Winter 2023 matin30 midi30 soir30

No simple rules or trends for the solution about sizing process.

## System have strong dependences at :

- Solar Irradiance
- Load profile over the time
- Battery capacity to assume charge
- Same oversizing PV or Battery is not coccineous

16

# « Conclusion and Perspectives»

EMR'25, Lille, June 2025

### **Key points:**

- Off-grid E-bike charging is feasible with correct system sizing
- EMR and backward modelling offer solid tools for system sizing and validation
- Trade-offs between cost, performance, and reliability must be balanced
  - Challenges for developping a generic methodology for sizing
    - > Modular and scalable sizing adapted per case study

#### **Perspectives:**

- EMR and MSC for validation of sizing results and constraints
- Investigate hybrid systems (solar + grid or wind) for EV's charging
- Expand to real-time deployment and Life Cycle Analysis (LCA)
- Explore scaling the model for **fleet-level systems**

18

# « Biographies and references »

#### - Authors -



**Dr. Halima IKAOUASSEN**, Université Marie et Louis Pasteur, FEMTO-ST, PhD in Electrical Engineering at Mohammed V University of Rabat in 2020 Associate Prof. at Université Marie et Louis Pasteur, Belfort since 2024 Researcher member of FCLAB –Hydrogen Platform Research topics: EMR formalism, Micro-grids, Nonlinear Controles, Solar Renewable energy

UNIVERSITE
MARIE & LOUIS
PASTEUR

SCIENCES &
TECHNOLOGIES

20



**Dr. Florian TOURNEZ**, University of Lille, L2EP, PhD in Electrical Engineering at University of Lille in 2023.

Doctor researcher at L2EP, Lille since 2018

Research topics: EMR formalism, Hardwarr-In the Loop (HIL), Power chain, Evs, Human in the Loop Driver in the Loop, Solar Renewable energy Florian.Tournez@univ-lille.fr



f() FC LAB



Prof. Alain BOUSCAYROL, University of Lille, L2EP, Head of the Master "Automatic control & Electrical Systems" Coordinator of the CUMIN interdisciplinary programme Chair of the steering committee of IEEE-VPP Conference PhD in Electrical Engineering at University of Toulouse (1995) Research topics: EMR formalism, HIL testing, control & EV-HEVs

Alain.Bouscayrol@univ-lille.fr

Halima.lkaouassen@univ-fcomte.fr









#### - References -

EMR'25, Lille, June 2025

- [Bouscayrol 2012] A. Bouscayrol, J. P. Hautier, B. Lemaire-Semail, "Graphic Formalisms for the Control of Multi-Physical Energetic Systems", Systemic Design Methodologies for Electrical Energy, tome 1, Analysis, Synthesis and Management, Chapter 3, ISTE Willey editions, October 2012, ISBN: 9781848213883.
- [Bouscayrol 2023] A. Bouscayrol, B. Lemaire-Semail, "Energetic Macroscopic Representation and Inversion-Based Control", Encyclopedia of electrical and electronic power engineering, Vol. 3, pp 365-375, Elesevier, DOI: 10.1016/B978-0-12-821204-2.00117-3, ISBN: 978-0-12-823211-8, 2023.
- [Lhomme 2014] W. Lhomme, P. Delarue, A. Bouscayrol, P. Barrade, "La REM, formalismes multiphysique de commande des systèmes énergétiques", Les Techniques de l'Ingénieur, Référence D3066, Novembre 2014 (text in French, lift example).
- [Horrein 2018] L. Horrein, A. Bouscayrol, "Model reduction methodology for EMS of hybrid electric vehicles", IEEE-VPPC'19, Hanoi (Vietnam), October 2019.
- [Fadili 2023] S. Fadili, L. Ferreira, P. Delarue, A. Bouscayrol, H. Ikaouassen, F. Bonin, & N. Ferlay. (2023, October). Experimental PV-based charging station for e-bikes. In 2023 IEEE Vehicle Power and Propulsion Conference (VPPC) (pp. 1-6). IEEE.



# Thank you for your attention!