

Van Cay NGUYEN^{1,2}, Ronan GERMAN¹, Ali SARI², Walter LHOMME¹

¹L2EP, University of Lille, France ²AMPERE, Claude Bernard University Lyon 1

Objective of MARSHALL

EMR'25, Lille, July 2025

MARSHALL: develop scaling and modularizing laws for HDV batteries or FCs

My work: focus on HDV battery

EMR'25, Lille, July 2025

VECTO and **EMR** of Battery Heavy-duty vehicle

Dynamical electro-thermal model of battery cell

Conclusion and Perspective

«Vehicle Energy Consumption calculation TOol (VECTO) and EMR of Battery Heavy-duty vehicle»

EMR'25, Lille, July 2025

> Simulation tool deployed by the European Commission

➤ Used to determine CO₂ Emissions and Energy Consumption of HDV

EMR-based Scaling of Batteries VECTO: A Backward Modeling Approach 6 EMR'25, Lille, July 2025 Driving Axle Angle □ VECTO component model Driver Vehicle Wheels Brakes Cycle Gear drive (Backward approach) Electric Machine Storage **Systems** □ VECTO Interface Auxiliaries Graphical User Interface / Commandline Interface Consumption of all components Type of vehicle Simulation Module Mission profile **JSON XML** Output Module Simulator Component data **Simulation Core** CSV Factory Environment **CSV** Model Data Vehicle mass Generation Driver → Vehicle Gearbox → Engine Powertrain Payload Builder [VECTO manual 2025]

Different options to organize Battery HDV model

EMR'25, Lille, July 2025

Backward

EMR: Forward description

Backward description based on EMR

[Rodríguez 2019]

«DYNAMICAL ELECTRO-THERMAL (E-T) MODEL OF BATTERY CELL»

[German 2020]

Methodology

EMR'25, Lille, July 2025

10

Model: TSWB-LYP160AHA

Nominal Capacity: 160Ah

Operation Voltage: 2.8 – 3.8 V

Operation Temperature: - 45°C - 85°C

Modeling

EMR

Simulation

Model type: Equivalent Electrical Circuit (grey-box)

Electrical model: Thevenin 1 RC

Thermal model: Model RC

Coupling dynamical electrical - thermal model

Representation coupling dynamical electrical - thermal model

Representation electrical parameters = $f(SoC, T_{Int})$

Model validation:
Using a real driving cycle
and
Comparison under various
temperature conditions.

winston-battery.com

11

☐ Principle interaction of one cell

Thermal part

12

Coupling electro-thermal battery model and traction model

EMR'25, Lille, July 2025

13

Integration of electro-thermal cell model into the HDV model

Cell electro-thermal model

Busbar

Module

Pack

Battery

Pack

Traction electro-mechanical model of HDV model

to be achieved...

« CONCLUSION AND PERSPECTIVE»

EMR'25, Lille, July 2025

15

- ☐ Simulation and comparison of 3 representations HDV (VECTO, EMR, EMR Backward)
- EMR facilitates the representation of interconnected multi-physics for electro-thermal model
- ☐ Integration of a dynamic electro-thermal battery model into the HDV model

Perspective

EMR'25, Lille, July 2025

16

Power loss scaling

Power adaptation

Update reference cell model

« Biographies and references »

- References -

EMR'25, Lille, July 2025

[German 2020] German, Ronan, Seima Shili, Anatole Desreveaux, Ali Sari, Pascal Venet, and Alain Bouscayrol. 2020. "Dynamical Coupling of a Battery Electro-Thermal Model and the Traction Model of an EV for Driving Range Simulation." IEEE Transactions on Vehicular Technology 69 (1): 328–37. https://doi.org/10.1109/TVT.2019.2955856.).

[Rodríguez 2019] Rodríguez, Felipe, and Oscar Delgado. 2019. "The Future of VECTO: CO2 Certification of Advanced Heavy-Duty Vehicles in the European Union." International Council on Clean Transportation, October.

[VECTO manual 2025] "VECTO Sim · Wiki · VECTO · GitLab." 2025. GitLab. June 5, 2025. https://code.europa.eu/groups/vecto/-/wikis/vecto-sim.

18

Thanks for your attention!