« Advanced Model Predictive Control for Energy-Efficient Thermal Management in Intelligent Electric Refrigerated Vans »

Kaibo Li¹, Sankhadeep Bhattacharyya¹

Truong Quang Dinh¹, Jongil Yoon², Bom Yun²

¹WMG, University of Warwick, UK

²KOCETI, South Korea

- 1. Background and Objective
- 2. Modelling of the Refrigerated Van
- 3. Model Predictive Control
- 4. Simulation Resutls
- 5. Conclusion

Background and Objective

Background and Objective

Background

- ☐ Refrigerated transport is essential for delivering food, plants, flowers, and medical products
- ☐ Global refrigerated vans are expected to increase from 4 million (2010) to 6.5 million (2030)
- ☐ Refrigerated transport contributes **15**% of global fossil fuel consumption and **40**% of greenhouse gas emissions

Challenges

- ☐ Traditional on-off control causes temperature fluctuations and is energy-inefficient
- ☐ External disturbances (ambient temperature, solar radiation, door opening events) impact performance

Background and Objective

Model Predictive Control (MPC)

- ☐ MPC improves energy efficiency and adapts to disturbances better than traditional methods
- ☐ Studies show up to 43% energy savings with MPC over conventional PI controllers

Hierarchical MPC (HMPC)

- ☐ Proposed H-MPC structure with a **planning layer and an operating layer**
- ☐ Uses two Nonlinear MPCs (NLMPC) with different sampling times and prediction horizons
- ☐ Reduced computational time while maintaining or improving energy efficiency

Objective

To develop a computationally efficient predictive control for refrigerated van using hierarchical architecture

Modelling of the refrigerated van

Energetic Macroscopic Representation (EMR)

Graphical description

=

organization of models of complex systems

Systematic deduction of organization of control schemes

Principle of interaction

Each action induces a reaction

Principle of causality

Different meaning in different domains:

- Physics: output is obtained from input after a delay
- Mathematics: output is an integral function of input
- Automatic control: output is the state variable
- Energy: output is the energetic variable

Configuration of the Refrigerated Van

Assumptions:

- ☐ Temperature-controlled Refrigeration
 Unit (TRU) consists of a condenser,
 evaporator, thermal expansion valve,
 and compressor
- ☐ The cooling pipe is embedded in the inner wall of the chamber
- ☐ The number of packages is expected to change at door opening events
- ☐ The new packages are already at the same tempera-ture as the ones kept in van

Model of the Refrigerated Van with EMR

temperature

Model Predictive Control

Formalization of Model Predictive Control

☐ State variables: Inner wall Cargo space Package temperature temperature temperature

$$x = \left[T_w, T_{air}, T_{pk}\right]$$

☐ Control variable:

 $u = \omega$

Compressor speed

■ Measureable disturbances:

 $w = \begin{bmatrix} T_{amb}, n_{pk}, \xi \end{bmatrix}$ Ambient Package Door opening temperature number event

Nonlinear Model Predictive Control (NLMPC)

NLMPC controller

Optimization algorithm

$$\min_{\omega} \sum_{k=1}^{N_{NLMPC}} \alpha_1 P_{comp_e}(k) + \alpha_2 \omega(k) + \alpha_3 \Delta \omega(k) + \alpha_4 (T_{air}(k)) - T_{air_ref}^2 + \alpha_5 \sigma_1(k)$$

s.t.

$$T_{air}^{LL} - \sigma_1(k) \le T_{air}(k) \le T_{air}^{UL} + \sigma_1(k)$$

$$\omega_{min} \le \omega(k) \le \omega_{max}$$

$$0 \le \sigma_1(k)$$

 $u \int$

Nonlinear prediction model

$$[T_{air}(k+1), T_w(k+1), T_{pk}(k+1)]$$

= $f_{bat}(x(k), u(k+1), w(k+1))T_s$

[x(k), w(k)]

Hierarchical Model Predictive Control (H-MPC)

H-MPC controller

Planning layer

$\min_{\omega} \sum_{k=1}^{N_{planning}} \alpha_1 P_{comp_e}(k) + \alpha_2 \omega(k) + \alpha_3 \Delta \omega(k) + \alpha_4 (T_{air}(k) - T_{air_ref})^2 + \alpha_5 \sigma_1(k)$

Constraints

Nonlinear prediction model

$$T_{air_ref}^*$$
 \prod

Operating layer

$$\min_{\omega} \sum_{k=1}^{N_{operating}} \left(T_{air}(k) - T_{air_ref}^* \right)^2$$

Constraints

Nonlinear prediction model

[x(k), w(k)]

Simulation Results

Comparisons between NLMPC and HMPC

- Ambient temperature varies due to factors like solar radiation
- Number of packages changes only during door openings
- NLMPC maintains a lower air temperature compared to the reference
- ☐ H-MPC causes air temperature to fluctuate around the reference temperature
- Air temperature rises when the door is open due to warm air inflow
- Control performance differences stem from variations in cost functions

Comparisons between NLMPC and HMPC

	Constraint violation (Ks)	Energy Consumption (kJ)	Simulation time (s)
MPC (benchmark)	1329	29725	127.21
НМРС	12607	28088	36.98

Note: The prediction horizon and sampling time for NLMPC are set to $N_{NLMPC}=20$ and $T_s^{NLMPC}=5s$, respectively. For H-MPC, the prediction horizon and sampling time of the planning layer are specified as $N_{planning}=4$ and $T_s^{planning}=25s$, while for the operating layer, they are set to $N_{operating}=2$ and $T_s^{operating}=5s$.

- ☐ H-MPC has higher constraint violation than MPC
- ☐ But has similar energy consumption and saves simulation time by 71%

Sensitivity analysis

- ☐ H-MPC reduces energy consumption compared to standard MPC. With a 250s prediction horizon, H-MPC (planning: 25s, operating: 5s) uses 10% less energy than MPC
- ☐ Longer prediction horizons in MPC increase energy use, while H-MPC generally benefits from longer horizons

Sensitivity analysis

- ☐ MPC simulation time increases exponentially with longer prediction horizons, while H-MPC remains nearly constant
- ☐ H-MPC reduces computation time across all cases, with at least 90% reduction for a 250s prediction horizon
- ☐ Higher sample times in both the planning and operating layers of H-MPC further lower computational costs

Conclusion

Future work

- ☐ Further optimization of H-MPC parameters
- ☐ Integration with machine learning for improved predictive accuracy and adaptability
- ☐ Predicting door-opening events to enable pre-cooling and enhance system efficiency

Questions and discussions