Dr. Clément MAYET, Prof. Alain BOUSCAYROL, Dr. Philippe DELARUE, Mr. Charles BROCART

L2EP, University of Lille, France

European Metropolis of Lille, France











EMR'25, Lille, July 2025



2 EMR-based Models

3 Results



# « Context & Objectives »

### **Context & Objectives**

EMR'25, Lille, July 2025

Professional

trips

CO2 equivalent

## Reduce the global GHG Emission in ULille

In 2020

GHG 52 000 tons CO2eq

**Thus Cumin Program** Different projects focused on mobility





60%



EMR'25, Lille, July 2025

Université de Lille

**Campus** 

## **REMUS – Recovery of "Metro" Braking Energy for a Sustainable University**



#### Metro

Hauts-de-France

R. O. BERRIEL (Ph.D.) 22/12/2023

New subway (line 1)

### **Tramway**

MEL Internship (2024) M2 VIE Project (2025)

New tramway

#### Bus

M2 VIE Projects (2024 & 2025)

**Comparison between** 

transportation modes

New e-bus



New vehicle



Actual vehicle





## « EMR-based Models »



EMR'25, Lille, July 2025

## **EMR-based model of the new subway**

- Total of 4 cars
- 3 Traction cars(MC1, M and MC2)
- > 1 non-traction car (T)





**Braking strategy** 

### **EMR-based model of the subway system**

#### EMR'25, Lille, July 2025

## **EMR-based model of the new subway**

Mechanical brake

Total of 4 cars

Traction machine

- 3 Traction cars(MC1, M and MC2)
- 1 non-traction car (T)







### **EMR-based model of the subway system**

EMR'25, Lille, July 2025

## **Experimental validation**







- Energy recovery phase
- 2.1% difference in energy consumption
- Validation of the simulation tool



### **EMR-based model of the subway system**

EMR'25, Lille, July 2025

10

## **Model simplification**

- 1) Same operation for all cars
- 2) Neglect the non-traction car
- 3) Neglect fast dynamics (ex: static model of the drive)





### **EMR-based model of the subway system**

EMR'25, Lille, July 2025

11

## **Complete model**

From previous works

Estimate energy consumption for various scenarios



### **Energetic Macroscopic Representation (EMR)**



## « Results »



### **EMR-based model of the subway system**

EMR'25, Lille, July 2025

13

## **Subway simulation**

Multiple vehicles circulation 34 vehicles on peak-hours & 10 TPS

### Respecting timetable

About 19h of operation

### **Daily key numbers:**

Total energy: 82.6 MWh

Total distance: 10653.6 km

306 passengers per vehicle in average



### **Timetable**



25 Wh/pass.km



#### Simulation results

EMR'25, Lille, July 2025

14

## **Public Rail Transports**

### Daily indicators per person

| Transport | Distance | Energy   | CO2eq  |
|-----------|----------|----------|--------|
| Tramway   | 8.8 km   | 233.2 Wh | 7.5 g  |
| Subway    | 15.2 km  | 384.6 Wh | 12.3 g |
| Total     | 24 km    | 617.8 Wh | 19.8 g |

32 gCO2eq/kWh (RTE, 2023)

Well-to-Tank (WTT 100%)

Tank-to-Wheel (TTW 0%)

Other daily indicators per person:

- 72 min round trip
- 1.45 € per day (annual pass)



# « Conclusions & Perspectives »



### **Conclusions & Perspectives**

EMR'25, Lille, July 2025

16

### **Conclusions**

- EMR for better organization of the entire complex model
- Simulation of the future public rail transport (new metro + new tramway)
- Estimation of several daily indicators (GHG, energy, journey time, cost, etc.)
- Comparison with gasoline cars

| Indicators            | Gazoline car   | vs    | Rail public transport |
|-----------------------|----------------|-------|-----------------------|
| GHG                   | 2459.8 g CO2eq | ÷ 124 | 19.8 g CO2eq          |
| Travel time           | 30 min         | × 2.4 | 72 min                |
| Direct personal costs | 1.76 €         | ÷ 1.2 | 1.45 €                |

### **Perspectives**

- Consideration of other transport systems (buses, electric bicycles, etc.)
- Complete life cycle analysis (LCA) to refine environmental comparisons
- Estimation of other indicators (cost to society, stress factor, human factor, etc.)

## Thanks for your attention!

# Simulation results

## Personal car (gasoline)

### Daily indicators per person

| Transport | Distance | Gasoline | CO2eq    |
|-----------|----------|----------|----------|
| Car       | 19.6 km  | 0.94 L   | 2459.8 g |

14.5 gCO2eq/L

111 gCO2eq/L

Well-to-Tank (WTT 11.5%)

Tank-to-Wheel (TTW 88.5%)

Other daily indicators per person:

- 30 min round trip
- 1.76 € per day (1.88 €/L in 2023)





### **Context & Objectives**

EMR'25, Lille, July 2025

19

### New public rail transports in MEL

### New subways





NMR (Alstom)



### **New Tramways**



Old BREDA tram

CITADIS X03 tram (Alstom)



**Evaluate the impact of these new rail public transports**